Security Review Report
NM-0432 Lagoon Protocol

NETHERMIND

{J} SECURITY

(Jan 30, 2025)

NETHERMIND

{J} SECURITY

Contents
1 Executive Summary 2
2 Audited Files 3
3 Summary of Issues 3
4 System Overview 4
41 ACIOIS . . o e 4
4.2 Vault States 4
4.3 Depositand Redeem operations e e e 4
A4 FEES . . o i i 5
5 Risk Rating Methodology 6
6 Issues 7
6.1 [Info] maxWithdraw(...) function returns wrong value when the vaultispaused 7
7 Documentation Evaluation 8
8 Test Suite Evaluation 9
8.1 Compilation Quiput 9
8.2 Tests OUIPUL o o 10
9 About Nethermind 14

” NETHERMIND
NM-0432 - LAGOON PROTOCOL - SECURITY REVIEW \Zs SECURITY

1 Executive Summary

This document presents the security review performed by Nethermind Security for Lagoon Protocol smart contracts. Lagoon Protocol
is a decentralized asset management platform that enables asset managers to create Lagoon Vaults. These Vaults provide efficient,
non-custodial, and risk-managed asset management solutions.

Built on a foundation of smart contract standards, Lagoon Protocol leverages the power of Gnosis Safe, Zodiac Roles Modifier, and other
key components to create highly customizable and secure vaults for managing digital assets.

The audit focuses on the changes added through the Pull Request 180.

The audit was performed using (a) manual analysis of the codebase, (b) automated analysis tools, and (c) creation of test cases. Along
this document, we report one point of attention, classified as Informational. The issues are summarized in Fig. 1.

This document is organized as follows. Section 2 presents the files in the scope. Section 3 summarizes the issues. Section 4 presents
the system overview. Section 5 discusses the risk rating methodology. Section 6 details the issues. Section 7 discusses the documentation
provided by the client for this audit. Section 8 presents the compilation, tests, and automated tests. Section 9 concludes the document.

Severity Status

Fixed

100.0%

(a) (b)

Fig. 1: Distribution of issues: Critical (0), High (0), Medium (0), Low (0), Undetermined (0), Informational (1), Best Practices (0).
Distribution of status: Fixed (1), Acknowledged (0), Mitigated (0), Unresolved (0)

Summary of the Audit

Audit Type Security Review

Initial Report January 29, 2025

Final Report January 30, 2025

Repository lagoon-v0

Commit 8303fc5¢c3f789369967b4fafdc00e4058ecb21ac
Final Commit 3d0034136a5be28459b1884095e€9658d1e95bd6a
Documentation Docs

Documentation Assessment High

Test Suite Assessment High

https://www.nethermind.io/smart-contract-audits
https://github.com/hopperlabsxyz/lagoon-v0
https://github.com/hopperlabsxyz/lagoon-v0/pull/180
https://github.com/hopperlabsxyz/lagoon-v0
https://github.com/hopperlabsxyz/lagoon-v0/tree/8303fc5c3f789369967b4fafdc00e4058ecb21ac
https://github.com/hopperlabsxyz/lagoon-v0/commit/3d0034136a5be28459b1884095e9658d1e95bd6a
https://doc.hopperlabs.xyz/

NETHERMIND

{7} SECURITY

2 Audited Files

Contract LoC Comments | Ratio Blank Total
1 src/vault/FeeManager.sol 150 67 44.7% 43 260
2 src/vault/ERC7540.sol 418 169 40.4% 130 717
3 src/vault/Vault.sol 237 119 50.2% 50 406
Total 805 355 44.1% 223 1383
* The review was focused on the changes introduced by the Pull Request 180.
3 Summary of Issues
Finding Severity Update
1 maxWithdraw(...) function returns wrong value when the vault is paused Info Fixed

https://github.com/hopperlabsxyz/lagoon-v0/tree/8303fc5c3f789369967b4fafdc00e4058ecb21ac/src/vault/FeeManager.sol
https://github.com/hopperlabsxyz/lagoon-v0/tree/8303fc5c3f789369967b4fafdc00e4058ecb21ac/src/vault/ERC7540.sol
https://github.com/hopperlabsxyz/lagoon-v0/tree/8303fc5c3f789369967b4fafdc00e4058ecb21ac/src/vault/Vault.sol
https://github.com/hopperlabsxyz/lagoon-v0/pull/180

NETHERMIND

{7} SECURITY

4 System Overview

Lagoon Protocol is a decentralized asset management platform that enables asset managers to create Lagoon Vaults. These Vaults
provide efficient, non-custodial, and risk-managed asset management solutions.

Built on a foundation of smart contract standards, Lagoon Protocol leverages the power of Gnosis Safe, Zodiac Roles Modifier, and other
key components to create highly customizable and secure vaults for managing digital assets.

Lagoon Protocol enables the creation of decentralized Vaults (Lagoon Vaults) that support various roles, including Asset Managers, NAV
Committees, Vault Creators, and Fund Depositors. These Vaults are governed by smart contracts that allow for a wide range of DeFi
strategies, from asset management to yield farming, all while maintaining a high level of security and control. The protocol’s design
prioritizes flexibility, enabling asset managers to configure their Vaults with specific DeFi protocol whitelists, separation of power, fee
structures, and more. It follows the ERC-7540 standard for Asynchronous ERC-4626 Tokenized Vaults.

4.1 Actors

— AssetManager: The asset manager is the actor in charge of using the funds in the Vault to generate more value. The AssetMan-
ager will interact with the Vault through a Gnosis Safe wallet that will restrict the type of operations the manager can do. Only the
manager can execute settlement operations.

— NAV Committees: The NAV Committe will submit new valuation proposals to the Vault. This actor is in charge of calculating the
current value of all the assets held by the Vault and submitting it for future settlement.

— Owner: The owner of the Vault can change multiple parameters from the configuration of the vault, including the fee rates and
receivers. The owner can also change the current NAV Committee address or start the Vault closing procedure.

— Users: The User actor refers to regular users using the Vault. These users will deposit assets in exchange for shares that can be
redeemed later. Redeeming shares will give the user a certain amount of assets relative to the valuation of the vault at the moment
of the redeeming action.

4.2 Vault States

A Vault can be in three main states: Open, Closing, and Closed. Depending on the current state of the Vault, it will behave differently for
certain actions.

— Open: After a Vaultis initialized, it will be automatically in the Open state. In this state, the Vault is open to deposits and withdrawals.
New valuations can be proposed and settled. An Open Vault can only transition to the Closing state.

— Closing: Only the Onwer actor can change the Vault to the Closing state. The requestRedeem operations are no longer possible
in this state. It is possible for the NAV Committee to propose new valuations, but settlement operations cannot be executed. To
execute another settlement, a call to the close(...) function must be made; this call will transition the Vault to the Closed state.

— Closed: At this state, the Vault is closed; settlements are locked, and withdrawals are guaranteed at a fixed price per share. No
new valuations can be proposed, and settlements cannot be executed anymore. The Vault cannot transition to a different state.

It is important to note that requestDeposit operations are always available, even when executing any new settlements is impossible. If a
user requests a deposit and no new settlement can be executed, the user can cancel the request and recover the funds.

4.3 Deposit and Redeem operations

Deposit and Redemption are the most important operations from the Vault. These are the actions executed by users to deposit assets
and redeem shares. These operations are executed asynchronously. Users first need to create a request and wait until a settlement is
executed, which will complete their request. After a request is completed, a user can finish the deposit or redeem operation. A request can
only be completed if it was placed before the final evaluation for the current settlement period. This means that if the settlement occurs
after the request has been placed but without any evaluations between these two events, this settlement will not complete the request.
The user will have to wait until the next evaluation and settlement.

Compared to synchronous vaults, in asynchronous vaults, the users do not know the price per share that will be executed for their operation
at the moment of the request. When they start a request, the involved assets are sent to the pending silo contract until the operation is
settled. After the operation is settled, depending on the type of operation, the funds will be sent to the asset manager or the vault. Users
can claim their assets or shares based on the price per share related to their settlement.

NETHERMIND

{7} SECURITY

4.4 Fees

The Vault will charge two types of fees: management and performance fees.

The management fees are calculated based on the assets under management (AUM) and are charged over time and collected during
vault settlement. The formula used here calculates management fees by multiplying the assets by the management rate (a percentage
expressed in basis points or BPS) and prorating it by the time elapsed (relative to one year).

asset * rate timeclapsed
*
BPS lyear

managementFee = (

The performance fees are charged on profits and are calculated only when the value of the assets exceeds a high water mark (the highest
historical value per one share). This is done to ensure that fees are charged only on actual profits and not on recovered losses.

((pricePerShare — highW ater Mark) = total Supply) * rate
BPS

per formanceFee =

NETHERMIND

{7} SECURITY

5 Risk Rating Methodology

The risk rating methodology used by Nethermind Security follows the principles established by the OWASP Foundation. The severity of
each finding is determined by two factors: Likelihood and Impact.

Likelihood measures how likely the finding is to be uncovered and exploited by an attacker. This factor will be one of the following values:
a) High: The issue is trivial to exploit and has no specific conditions that need to be met;
b) Medium: The issue is moderately complex and may have some conditions that need to be met;
c) Low: The issue is very complex and requires very specific conditions to be met.

When defining the likelihood of a finding, other factors are also considered. These can include but are not limited to motive, opportunity,
exploit accessibility, ease of discovery, and ease of exploit.

Impact is a measure of the damage that may be caused if an attacker exploits the finding. This factor will be one of the following values:
a) High: The issue can cause significant damage, such as loss of funds or the protocol entering an unrecoverable state;

b) Medium: The issue can cause moderate damage, such as impacts that only affect a small group of users or only a particular part
of the protocol;

c) Low: The issue can cause little to no damage, such as bugs that are easily recoverable or cause unexpected interactions that
cause minor inconveniences.

When defining the impact of a finding, other factors are also considered. These can include but are not limited to Data/state integrity, loss
of availability, financial loss, and reputation damage. After defining the likelihood and impact of an issue, the severity can be determined
according to the table below.

Severity Risk
High Medium High Critical
Impact Medium Low . Medium High_
Low Info/Best Practices | Low Medium
Undetermined Undetermined Undetermined Undetermined
Low Medium High
Likelihood

To address issues that do not fit a High/Medium/Low severity, Nethermind Security also uses three more finding severities: Informational,
Best Practices, and Undetermined.

a) Informational findings do not pose any risk to the application, but they carry some information that the audit team intends to pass
to the client formally;

b) Best Practice findings are used when some piece of code does not conform with smart contract development best practices;

¢) Undetermined findings are used when we cannot predict the impact or likelihood of the issue.

https://www.nethermind.io/smart-contract-audits
https://owasp.org
https://www.nethermind.io/smart-contract-audits

” NETHERMIND
NM-0432 - LAGOON PROTOCOL - SECURITY REVIEW Zs SECURITY

6 Issues

6.1 [Info] maxWithdraw(...) function returns wrong value when the vault is paused
File(s): src/vault/vVault.sol

Description: When the Vault is paused withdraw(...) operations are not possible. The maxWithdraw(...) function does not take into
account when the Vault is paused for its returned value.

Recommendation(s): Return zero from the maxWithdraw(...) function when the Vault is paused.
Status: Fixed.

Update from the client: Fixed in commit aa3f87.

https://github.com/hopperlabsxyz/lagoon-v0/blob/8303fc5c3f789369967b4fafdc00e4058ecb21ac/src/vault/Vault.sol#L367
https://github.com/hopperlabsxyz/lagoon-v0/pull/180/commits/aa3f87314ec1d1490c26becb2e60a533946f9e94

NETHERMIND

{J} SECURITY

7 Documentation Evaluation

Software documentation refers to the written or visual information that describes the functionality, architecture, design, and implementation
of software. It provides a comprehensive overview of the software system and helps users, developers, and stakeholders understand how
the software works, how to use it, and how to maintain it. Software documentation can take different forms, such as user manuals, system
manuals, technical specifications, requirements documents, design documents, and code comments. Software documentation is critical
in software development, enabling effective communication between developers, testers, users, and other stakeholders. It helps to ensure
that everyone involved in the development process has a shared understanding of the software system and its functionality. Moreover,
software documentation can improve software maintenance by providing a clear and complete understanding of the software system,
making it easier for developers to maintain, modify, and update the software over time. Smart contracts can use various types of software
documentation. Some of the most common types include:

— Technical whitepaper: A technical whitepaper is a comprehensive document describing the smart contract’s design and technical
details. It includes information about the purpose of the contract, its architecture, its components, and how they interact with each
other;

— User manual: A user manual is a document that provides information about how to use the smart contract. It includes step-by-step
instructions on how to perform various tasks and explains the different features and functionalities of the contract;

— Code documentation: Code documentation is a document that provides details about the code of the smart contract. It includes
information about the functions, variables, and classes used in the code, as well as explanations of how they work;

— APl documentation: APl documentation is a document that provides information about the API (Application Programming Interface)
of the smart contract. It includes details about the methods, parameters, and responses that can be used to interact with the
contract;

— Testing documentation: Testing documentation is a document that provides information about how the smart contract was tested.
It includes details about the test cases that were used, the results of the tests, and any issues that were identified during testing;

— Audit documentation: Audit documentation includes reports, notes, and other materials related to the security audit of the smart
contract. This type of documentation is critical in ensuring that the smart contract is secure and free from vulnerabilities.

These types of documentation are essential for smart contract development and maintenance. They help ensure that the contract is
properly designed, implemented, and tested, and they provide a reference for developers who need to modify or maintain the contract in
the future.

Remarks about the Lagoon Protocol documentation

The documentation for the Lagoon Protocol was provided through their official docs. This documentation provided a high-level
overview of the protocol and details of its implementation. Moreover, the Lagoon Protocol team addressed all questions and
concerns raised by the Nethermind Security team, providing valuable insights and a comprehensive understanding of the project’s
technical aspects.

https://doc.hopperlabs.xyz/

NETHERMIND

{J} SECURITY

8 Test Suite Evaluation
8.1 Compilation Output

> forge build --force
[] Compiling...
[1 Compiling 123 files with Solc 0.8.26
[] Solc 0.8.26 finished in 33.97s
Compiler run successful with warnings:
Warning (5740): Unreachable code.
--> lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC4626Upgradeable.sol:201:9:
|

201 | _deposit(_msgSender(), receiver, assets, shares);

| AA

Warning (5740): Unreachable code.
--> lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC4626Upgradeable.so0l:203:9:
|

203 | return shares;

| AAAAAAAAAAAAA

Warning (5740): Unreachable code.
--> lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC4626Upgradeable.s0l:218:9:
|

218 | _deposit(_msgSender(), receiver, assets, shares);

| AA

Warning (5740): Unreachable code.
--> lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC4626Upgradeable.so0l:220:9:
|

220 | return assets;

| AAAAAAAAAAAAA

Warning (5740): Unreachable code.
--> lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC4626Upgradeable.s0l:231:9:
|

231 | _withdraw(_msgSender(), receiver, owner, assets, shares);

| AA

Warning (5740): Unreachable code.
--> lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC4626Upgradeable.s0l:233:9:
I

233 | return shares;

| AANAAAAAAAANAAA

Warning (5740): Unreachable code.
--> lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC4626Upgradeable.sol:244:9:
|

244 | _withdraw(_msgSender(), receiver, owner, assets, shares);

| AA

Warning (5740): Unreachable code.
--> lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC4626Upgradeable.so0l:246:9:
|

246 | return assets;

| AAAAAAAAAAAAA

Warning (2072): Unused local variable.
--> test/Base.so0l:216:9:
|

216 | uint256 maxRedeem = vault.convertToAssets(vault.maxRedeem(controller), lastRequestId);

| AAAAAAAAAAAAAAAAA

Warning (2072): Unused local variable.
--> test/FeeManager.t.s0l:309:9:
|

309 | uint256 balancelBefore = assetBalance(userl.addr);

| AAAAAAAAAAAAAAAAAAAAAA

%

NETHERMIND

SECURITY

Warning (2072): Unused local variable.
--> test/FeeManager.t.s0l:310:9:
|

310 | uint256 balance?Before = assetBalance(user2.addr);

| AAAAAAAAAAAAAAAAAAAAAA

Warning (2072): Unused local variable.
--> test/FeeManager.t.so0l:320:9:
|
320 | uint256 user2Shares = vault.balanceOf (user2.addr);

| AAAAAAAAAAAAAAAAAAA

Warning (2072): Unused local variable.
--> test/FeeManager.t.s0l:518:9:
|

518 | uint256 userlAssetBefore = assetBalance(userl.addr);

| AAAAAAAAAAAAAAAAAAAAAAAA

8.2 Tests Output

forge test
[] Compiling...
No files changed, compilation skipped

Ran 6 tests for test/unitTests/FeeRegistry.t.sol:TestFeeRegistry

[PASS] test_cancelCustomRate() (gas: 43630)

[PASS] test_customRate() (gas: 57475)

[PASS] test_init() (gas: 12715)

[PASS] test_protocolRate() (gas: 29645)

[PASS] test_updateProtocolFeeReceiver() (gas: 20770)

[PASS] test_updateProtocolFeeReceiver_revertIfNotOwner() (gas: 10726)

Suite result: ok. 6 passed; 0 failed; © skipped; finished in 2.55s (5.91ms CPU time)

Ran 2 tests for test/Silo.t.sol:TestSilo

[PASS] test_constructorGivesInfiniteApprovalToMsgSender() (gas: 133979)

[PASS] test_vaultHasInfiniteApprovalOnPendingSilo() (gas: 25730)

Suite result: ok. 2 passed; 0 failed; 0 skipped; finished in 2.08s (738.87ms CPU time)

Ran 4 tests for test/Operator.t.sol:TestOperator

[PASS] test_addOperator() (gas: 44133)

[PASS] test_addOperatorwhenOpIsAlreadyOp() (gas: 48289)

[PASS] test_rmvOperator() (gas: 34455)

[PASS] test_rmvOperatorWhenAddressIsNotOperator() (gas: 24252)

Suite result: ok. 4 passed; 0 failed; 0 skipped; finished in 6.01s (3.02ms CPU time)

Ran 5 tests for test/CancelRequest.t.sol:TestCancelRequest

[PASS] test_cancelRequestDeposit() (gas: 136608)

[PASS] test_cancelRequestDeposit_revertsWhenNewTotalAssetsHasBeenUpdated() (gas: 200012)
[PASS] test_cancelRequestDeposit_when@PendingRequest() (gas: 17864)

[PASS] test_cancelRequestDeposit_whenNoRequestWereMade() (gas: 17867)

[PASS] test_cancelRequestDeposit_whenRequestIsClaimable() (gas: 17859)

Suite result: ok. 5 passed; 0 failed; 0 skipped; finished in 6.02s (5.12ms CPU time)

Ran 4 tests for test/Deposit.t.sol:TestDeposit

[PASS] test_deposit() (gas: 639615)

[PASS] test_deposit_revertIfNotOperator() (gas: 15684)

[PASS] test_deposit_revertIfRequestIdNotClaimable() (gas: 151431)

[PASS] test_deposit_shouldRevertIfInvalidReceiver() (gas: 615877)

Suite result: ok. 4 passed; 0 failed; 0 skipped; finished in 6.02s (1.25s CPU time)

Ran 14 tests for test/Pause.t.sol:TestPause

[PASS] test_cancelRequestDeposit_whenPaused_shouldFail() (gas: 157868)
[PASS] test_claimSharesAndRequestRedeem_whenPaused_shouldFail() (gas: 15508)
[PASS] test_deposit_whenPaused_shouldFail() (gas: 53918)

[PASS] test_mint_whenPaused_shouldFail() (gas: 54124)

[PASS] test_pauseShouldPause() (gas: 10674)

[PASS] test_requestDeposit_whenPaused_shouldFail() (gas: 21187)

[PASS] test_requestRedeem_whenPaused_shouldFail() (gas: 23279)

10

NETHERMIND

{J} SECURITY

[PASS] test_setOperator_whenPaused_shouldFail() (gas: 13470)

[PASS] test_settleDeposit_whenPaused_shouldFail() (gas: 86600)

[PASS] test_settleRedeem_whenPaused_shouldFail() (gas: 86622)

[PASS] test_unpauseShouldUnpause() (gas: 14606)

[PASS] test_updateNewTotalAssets_whenPaused_shouldFail() (gas: 19463)

[PASS] test_withdraw_whenPausedAndVaultClosed_shouldFail() (gas: 594966)

[PASS] test_withdraw_whenPaused_shouldFail() (gas: 428308)

Suite result: ok. 14 passed; 0 failed; 0 skipped; finished in 6.02s (11.04ms CPU time)

Ran 5 tests for test/Mint.t.sol:TestMint

[PASS] test_mint() (gas: 687754)

[PASS] test_mintAsOperator() (gas: 709928)

[PASS] test_mint_revertIfNotOperator() (gas: 15748)

[PASS] test_mint_revertIfRequestIdNotClaimable() (gas: 151384)

[PASS] test_mint_shouldRevertIfInvalidReceiver() (gas: 637230)

Suite result: ok. 5 passed; 0 failed; 0 skipped; finished in 6.02s (1.25s CPU time)

Ran 10 tests for test/Roles.t.sol:TestMint

[PASS] test_feeReceiver() (gas: 12890)

[PASS] test_feeRegistry() (gas: 12826)

[PASS] test_protocolFeeReceiver() (gas: 18170)

[PASS] test_safe() (gas: 12803)

[PASS] test_updateFeeReceiver() (gas: 19926)

[PASS] test_updateNewTotalAssetsManager() (gas: 19858)

[PASS] test_updateNewTotalAssetsManager_notOwner() (gas: 11070)
[PASS] test_updateWhitelistManager() (gas: 19796)

[PASS] test_valuationManager() (gas: 12824)

[PASS] test_whitelistManager() (gas: 12754)

Suite result: ok. 10 passed; 0 failed; 0 skipped; finished in 7.05ms (1.01ms CPU time)

Ran 9 tests for test/RequestRedeem.t.sol:TestRequestRedeem

[PASS] test_requestRedeem() (gas: 110249)

[PASS] test_requestRedeemTwoTimes() (gas: 123430)

[PASS] test_requestRedeem_OnlyOneRequestAllowed() (gas: 185445)

[PASS] test_requestRedeem_ShouldBeAbleToRequestRedeemAfterNAVUpdateAndClaimTheCorrectAmountOfAssets() (gas: 761890)
[PASS] test_requestRedeem_asAnOperator() (gas: 148972)

[PASS] test_requestRedeem_asAnOperatorNotAllowed() (gas: 30756)

[PASS] test_requestRedeem_notEnoughBalance() (gas: 74604)

[PASS] test_requestRedeem_updateClaimableDepositRequestAndPendingDepositRequest() (gas: 1046742)
[PASS] test_requestRedeem_withClaimableBalance() (gas: 465727)

Suite result: ok. 9 passed; 0 failed; 0 skipped; finished in 6.03s (13.86ms CPU time)

Ran 11 tests for test/ClaimSharesAndRequestRedeem.t.sol:TestDeposit

[PASS] test_claimSharesAndRedeem_IfRequestIdNotClaimableShouldIgnore() (gas: 278724)
[PASS] test_claimSharesAndRequestRedeem() (gas: 107460)

[PASS] test_claimSharesAndRequestRedeemTwoTimes() (gas: 115996)

[PASS] test_claimSharesAndRequestRedeemWithZeroInInput() (gas: 539963)

[PASS] test_claimSharesAndRequestRedeem_OnlyOneRequestAllowed() (gas: 189446)

[PASS] test_claimSharesAndRequestRedeem_allPossibleShares() (gas: 571288)

[PASS] test_claimSharesAndRequestRedeem_almostAllPossibleShares() (gas: 571324)

[PASS] test_claimSharesAndRequestRedeem_moreThanAllPossibleShares() (gas: 550368)
[PASS] test_claimSharesAndRequestRedeem_notEnoughBalance() (gas: 76758)

[PASS] test_claimSharesAndRequestRedeem_withClaimableBalance() (gas: 459995)

[PASS] test_requestRedeem_updateClaimableDepositRequestAndPendingDepositRequest() (gas: 1037499)
Suite result: ok. 11 passed; 0 failed; 0 skipped; finished in 6.03s (20.53ms CPU time)

Ran 3 tests for test/Withdraw.t.sol:TestWithdraw

[PASS] test_withdraw() (gas: 974764)

[PASS] test_withdraw_revertIfNotOperator() (gas: 20163)

[PASS] test_withdraw_revertIfRequestIdNotClaimable() (gas: 712378)

Suite result: ok. 3 passed; 0 failed; 0 skipped; finished in 15.20ms (7.19ms CPU time)

Ran 15 tests for test/Misc.t.sol:TestMisc

[PASS] test_contractSize() (gas: 4923971)

[PASS] test_decimals() (gas: 26888)

[PASS] test_depositId() (gas: 634745)

[PASS] test_epochSettleId() (gas: 979876)

[PASS] test_getRoleStorage() (gas: 32616)

[PASS] test_lastDepositRequestId() (gas: 1007799)
[PASS] test_lastRedeemRequestId() (gas: 1599253)
[PASS] test_pendingSilo() (gas: 26156)

[PASS] test_previewDeposit() (gas: 8554)

[PASS] test_previewMint() (gas: 8512)

[PASS] test_previewRedeem() (gas: 8436)

11

NETHERMIND

{J} SECURITY

[PASS]
[PASS]
[PASS]
[PASS]

Suite result: ok. 15 passed; 0 failed; 0 skipped; finished in 6.04s (1.28s CPU time)

Ran 1 test for test/Referral.t.sol:TestReferral

[PASS]

Suite result: ok. 1 passed; 0 failed; © skipped; finished in 4.52ms (541.92ps CPU time)

Ran 4 tests for test/Redeem.t.sol:TestRedeem

[PASS]
[PASS]
[PASS]
[PASS]

Suite result: ok. 4 passed; 0 failed; 0 skipped; finished in 12.62ms (12.23ms CPU time)

Ran 9 tests for test/FeeManager.t.sol:TestFeeManager

[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]

Suite result: ok. 9 passed; 0 failed; 0 skipped; finished in 6.47s (2.59s CPU time)

Ran 2 tests for test/InitiateClosing.t.sol:TestInitiateClosing

[PASS]
[PASS]

Suite result: ok. 2 passed; 0 failed; 0 skipped; finished in 6.59s (2.87ms CPU time)

Ran 18
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]

Suite result: ok. 18 passed; 0 failed; 0 skipped; finished in 6.80s (443.72ms CPU time)

Ran 16
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]

Suite result: ok. 16 passed; 0 failed; 0 skipped; finished in 1.49s (1.79s CPU time)

test_previewWithdraw() (gas: 8646)
test_redeemId() (gas: 910176)
test_share() (gas: 8772)
test_supportsInterface() (gas: 18596)

test_referral() (gas: 153921)

test_redeem() (gas: 953671)
test_redeem_revertIfRequestIdNotClaimable() (gas: 703750)
test_redeem_whenNotOperatorShouldRevert() (gas: 914012)
test_redeem_whenOperator() (gas: 983509)

test_CloseTakesCorrectAmountOfFees() (gas: 1480439)
test_FeesAreTakenAfterFreeride() (gas: 2608942)
test_NoFeesAreTakenDuringFreeRide() (gas: 2201258)
test_SettleRedeemTakesCorrectAmountOfFees() (gas: 1680739)
test_defaultHighWaterMark_equalsPricePerShares() (gas: 20183)
test_feeReceiverAndDaoHaveNoVaultSharesAtVaultCreation() (gas: 25706)
test_takeFees_cantBeCalledMultipleTimes() (gas: 197550)
test_updateRates_revertIfManagementRateAboveMaxRates() (gas: 23479)
test_updateRates_revertIfPerformanceRateAboveMaxRates() (gas: 23537)

test_RequestRedeemAfterNewTTAUpdateMustNotBeLockedBecauseOfClosing() (gas: 485079)
test_cantCloseWithoutNewTotalAssesUpdated() (gas: 156569)

tests for test/Close.t.sol:TestInitiateClosing
test_CloseCantBeCalledAfterVaultIsClosed() (gas: 252476)
test_canNotCallInitiateClosingTwice() (gas: 15842)
test_cantCloseAVaultWithoutFullUnwind() (gas: 276254)
test_cantUpdateNewTotalAssetsWhenClosed() (gas: 256090)
test_claimSharesAndRequestRedeem_whenNotOpen_shouldFail() (gas: 282431)
test_close_onPendingDeposit() (gas: 270404)

test_close_onPendingRedeem() (gas: 265437)
test_close_revertsIfPendingRequestCantBeFullfilled() (gas: 333353)
test_closingVaultMarkTheVaultAsClosed() (gas: 251411)
test_inClosedStateCanWithdrawAndRedeemIfOperatorOrEnoughAllowance() (gas: 418380)
test_inClosingStateCanNotWithdrawOrRedeemIfNotOperatorAndEvenWithEnoughAllowance() (gas: 63968)
test_inClosingStateCanWithdrawAndRedeemIfOperator() (gas: 105391)
test_newSettleDepositAreForbiddenButClaimsAreAvailable() (gas: 318049)
test_redeemAssetWithoutClaimableRedeem() (gas: 334709)
test_redeemSharesWithClaimableRedeem() (gas: 590822)
test_redeemSharesWithClaimableRedeemWithProfits() (gas: 653220)
test_requestRedemptionAreImpossible() (gas: 284626)
test_withdrawAssetWithoutClaimableRedeem() (gas: 810083)

tests for test/RequestDeposit.t.sol:TestRequestDeposit

test_only_one_request_allowed_per_settle_id() (gas: 241277)

test_requestDeposit() (gas: 159586)

test_requestDepositTwoTimes() (gas: 196348)
test_requestDeposit_ShouldBeAbleToDepositAgainWhenIndeterminationIsRaidedAtSettlement() (gas: 669897)
test_requestDeposit_ShouldBeAbleToRequestDepositAfterNAVUpdateAndClaimTheCorrectAmountOfShares() (gas: 879180)
test_requestDeposit_asAnOperator() (gas: 201991)

test_requestDeposit_asAnOperatorButOwnerNotEnoughApprove() (gas: 155508)
test_requestDeposit_asAnOperatorNotAllowed() (gas: 33766)

test_requestDeposit_notEnoughBalance() (gas: 75967)

test_requestDeposit_revertIfNotOperator() (gas: 15812)
test_requestDeposit_shouldBeCancelableAfterSettlementWhenRequestIsMadeDuringTheCurrentEpoch() (gas: 696021)
test_requestDeposit_updateClaimableDepositRequest() (gas: 1248504)
test_requestDeposit_withClaimableBalance() (gas: 722052)
test_requestDeposit_withClaimableBalance_with_eth() (gas: 3219)

test_requestDeposit_with_eth() (gas: 6981385)

test_requestDeposit_with_eth_and_wrong_userBalance() (gas: 6337)

12

NETHERMIND

{J} SECURITY

Ran 13 tests for test/Whitelist.t.sol:TestWhitelist

[PASS] test_addToWhitelist_revert() (gas: 7049642)

[PASS] test_noWhitelist() (gas: 6858987)

[PASS] test_requestDeposit_ShouldFailWhenControllerNotWhitelisted() (gas: 7059689)

[PASS] test_requestDeposit_ShouldNotFailWhenControllerNotWhitelistedandOperatorAndOwnerAre() (gas: 7142771)
[PASS] test_requestDeposit_WhenOwnerWhitelistedAndOperator() (gas: 7166302)

[PASS] test_requestRedeemWithoutBeingWhitelisted() (gas: 7789393)

[PASS] test_revokeFromWhitelist_revert() (gas: 7049698)

[PASS] test_transfer_ShouldWorkWhenReceiverWhitelisted() (gas: 7634238)

[PASS] test_transfer_WhenReceiverNotWhitelistedAfterDeactivateOfWhitelisting() (gas: 7591812)
[PASS] test_unwhitelist() (gas: 7084316)

[PASS] test_unwhitelistlList() (gas: 7083140)

[PASS] test_whitelist() (gas: 7076325)

[PASS] test_whitelistList() (gas: 7104707)

Suite result: ok. 13 passed; 0 failed; 0 skipped; finished in 2.89s (1.41s CPU time)

Ran 5 tests for test/RatesUpdate.t.sol:testRateUpdates

[PASS] test_ratesShouldMatchValuesAtInit() (gas: 6786039)

[PASS] test_ratesShouldRevertAtInitWhenToHigh() (gas: 6765333)

[PASS] test_updateRatesOverMaxPerformanceRateShouldRevert() (gas: 6784245)

[PASS] test_updateRatesShouldBeApplyed24HoursAfter() (gas: 6820115)

[PASS] test_updateRatesShouldBeApplyed24HoursAfter_VerifyThroughASettle() (gas: 7777638)
Suite result: ok. 5 passed; 0 failed; © skipped; finished in 1.91s (446.96ms CPU time)

Ran 13 tests for test/Settle.t.sol:TestSettle

[PASS] test_close_revertIfNotTotalAssetsManager() (gas: 12004)

[PASS] test_close_revertIfWrongNewTotalAssets() (gas: 104683)

[PASS] test_settleDepositAfterUpdate() (gas: 344647)

[PASS] test_settleDepositThenRedeemAfterUpdate() (gas: 161321)

[PASS] test_settleDeposit_revertIfNotTotalAssetsManager() (gas: 12123)

[PASS] test_settleDeposit_revertIfWrongNewTotalAssets() (gas: 73920)

[PASS] test_settleRedeemAfterUpdate() (gas: 308847)

[PASS] test_settleRedeem_revertIfNotTotalAssetsManager() (gas: 12115)

[PASS] test_settleRedeem_revertIfWrongNewTotalAssets() (gas: 73965)

[PASS] test_settle_deposit_without_totalAssets_update_reverts() (gas: 7408331)
[PASS] test_settle_redeem_totalAssets_update_reverts() (gas: 7570821)

[PASS] test_simple_settle() (gas: 652504)

[PASS] test_updateNewTotalAssets_revertIfNotTotalAssetsManager() (gas: 12056)
Suite result: ok. 13 passed; 0 failed; 0 skipped; finished in 1.91s (3.50s CPU time)

Ran 21 test suites in 9.65s (80.94s CPU time): 169 tests passed, 0 failed, 0 skipped (169 total tests)

13

NETHERMIND

{7} SECURITY

9 About Nethermind

Nethermind is a Blockchain Research and Software Engineering company. Our work touches every part of the web3 ecosystem - from
layer 1 and layer 2 engineering, cryptography research, and security to application-layer protocol development. We offer strategic support
to our institutional and enterprise partners across the blockchain, digital assets, and DeFi sectors, guiding them through all stages of the
research and development process, from initial concepts to successful implementation.

We offer security audits of projects built on EVM-compatible chains and Starknet. We are active builders of the Starknet ecosystem,
delivering a node implementation, a block explorer, a Solidity-to-Cairo transpiler, and formal verification tooling. Nethermind also provides
strategic support to our institutional and enterprise partners in blockchain, digital assets, and decentralized finance (DeFi). In the next
paragraphs, we introduce the company in more detail.

Blockchain Security: At Nethermind, we believe security is vital to the health and longevity of the entire Web3 ecosystem. We pro-
vide security services related to Smart Contract Audits, Formal Verification, and Real-Time Monitoring. Our Security Team comprises
blockchain security experts in each field, often collaborating to produce comprehensive and robust security solutions. The team has a
strong academic background, can apply state-of-the-art techniques, and is experienced in analyzing cutting-edge Solidity and Cairo smart
contracts, such as ArgentX and StarkGate (the bridge connecting Ethereum and StarkNet). Most team members hold a Ph.D. degree and
actively participate in the research community, accounting for 240+ articles published and 1,450+ citations in Google Scholar. The security
team adopts customer-oriented and interactive processes where clients are involved in all stages of the work.

Blockchain Core Development: Our core engineering team, consisting of over 20 developers, maintains, improves, and upgrades our
flagship product - the Nethermind Ethereum Execution Client. The client has been successfully operating for several years, supporting both
the Ethereum Mainnet and its testnets, and now accounts for nearly a quarter of all synced Mainnet nodes. Our unwavering commitment
to Ethereum’s growth and stability extends to sidechains and layer 2 solutions. Notably, we were the sole execution layer client to facilitate
Gnosis Chain’s Merge, transitioning from Aura to Proof of Stake (PoS), and we are actively developing a full-node client to bolster Starknet’s
decentralization efforts. Our core team equips partners with tools for seamless node set-up, using generated docker-compose scripts
tailored to their chosen execution client and preferred configurations for various network types.

DevOps and Infrastructure Management: Our infrastructure team ensures our partners’ systems operate securely, reliably, and effi-
ciently. We provide infrastructure design, deployment, monitoring, maintenance, and troubleshooting support, allowing you to focus on
your core business operations. Boasting extensive expertise in Blockchain as a Service, private blockchain implementations, and node
management, our infrastructure and DevOps engineers are proficient with major cloud solution providers and can host applications in-
house or on clients’ premises. Our global in-house SRE teams offer 24/7 monitoring and alerts for both infrastructure and application
levels. We manage over 5,000 public and private validators and maintain nodes on major public blockchains such as Polygon, Gnosis,
Solana, Cosmos, Near, Avalanche, Polkadot, Aptos, and StarkWare L2. Sedge is an open-source tool developed by our infrastructure
experts, designed to simplify the complex process of setting up a proof-of-stake (PoS) network or chain validator. Sedge generates docker-
compose scripts for the entire validator set-up based on the chosen client, making the process easier and quicker while following best
practices to avoid downtime and being slashed.

Cryptography Research: At Nethermind, our Cryptography Research team is dedicated to continuous internal research while fostering
close collaboration with external partners. The team has expertise across a wide range of domains, including cryptography protocols,
consensus design, decentralized identity, verifiable credentials, Sybil resistance, oracles, and credentials, distributed validator technology
(DVT), and Zero-knowledge proofs. This diverse skill set, combined with strong collaboration between our engineering teams, enables us
to deliver cutting-edge solutions to our partners and clients.

Smart Contract Development & DeFi Research: Our smart contract development and DeFi research team comprises 40+ world-class
engineers who collaborate closely with partners to identify needs and work on value-adding projects. The team specializes in Solidity
and Cairo development, architecture design, and DeFi solutions, including DEXs, AMMs, structured products, derivatives, and money
market protocols, as well as ERC20, 721, and 1155 token design. Our research and data analytics focuses on three key areas: technical
due diligence, market research, and DeFi research. Utilizing a data-driven approach, we offer in-depth insights and outlooks on various
industry themes.

Our suite of L2 tooling: Warp is Starknet’s approach to EVM compatibility. It allows developers to take their Solidity smart contracts
and transpile them to Cairo, Starknet’s smart contract language. In the short time since its inception, the project has accomplished many
achievements, including successfully transpiling Uniswap v3 onto Starknet using Warp.

- Voyager is a user-friendly Starknet block explorer that offers comprehensive insights into the Starknet network. With its intuitive
interface and powerful features, Voyager allows users to easily search for and examine transactions, addresses, and contract
details. As an essential tool for navigating the Starknet ecosystem, Voyager is the go-to solution for users seeking in-depth
information and analysis;

- Horus is an open-source formal verification tool for StarkNet smart contracts. It simplifies the process of formally verifying Starknet
smart contracts, allowing developers to express various assertions about the behavior of their code using a simple assertion
language;

— Juno is a full-node client implementation for Starknet, drawing on the expertise gained from developing the Nethermind Client.
Written in Golang and open-sourced from the outset, Juno verifies the validity of the data received from Starknet by comparing it to
proofs retrieved from Ethereum, thus maintaining the integrity and security of the entire ecosystem.

Learn more about us at nethermind.io.

14

nethermind.io

NETHERMIND

{7} SECURITY

General Advisory to Clients

As auditors, we recommend that any changes or updates made to the audited codebase undergo a re-audit or security review to address
potential vulnerabilities or risks introduced by the modifications. By conducting a re-audit or security review of the modified codebase,
you can significantly enhance the overall security of your system and reduce the likelihood of exploitation. However, we do not possess
the authority or right to impose obligations or restrictions on our clients regarding codebase updates, modifications, or subsequent audits.
Accordingly, the decision to seek a re-audit or security review lies solely with you.

Disclaimer

This report is based on the scope of materials and documentation provided by you to Nethermind in order that Nethermind could conduct
the security review outlined in 1. Executive Summary and 2. Audited Files. The results set out in this report may not be complete nor
inclusive of all vulnerabilities. Nethermind has provided the review and this report on an as-is, where-is, and as-available basis. You agree
that your access and/or use, including but not limited to any associated services, products, protocols, platforms, content, and materials,
will be at your sole risk. Blockchain technology remains under development and is subject to unknown risks and flaws. The review does
not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that could present
security risks. This report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party
should rely on this report in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset.
To the fullest extent permitted by law, Nethermind disclaims any liability in connection with this report, its content, and any related services
and products and your use thereof, including, without limitation, the implied warranties of merchantability, fithess for a particular purpose,
and non-infringement. Nethermind does not warrant, endorse, guarantee, or assume responsibility for any product or service advertised
or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and Nethermind will not be a party to or in any way be responsible for
monitoring any transaction between you and any third-party providers of products or services. As with the purchase or use of a product
or service through any medium or in any environment, you should use your best judgment and exercise caution where appropriate.
FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED
SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX,
LEGAL, REGULATORY, OR OTHER ADVICE.

15

https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io

	Executive Summary
	Audited Files
	Summary of Issues
	System Overview
	Actors
	Vault States
	Deposit and Redeem operations
	Fees

	Risk Rating Methodology
	Issues
	[Info] maxWithdraw(...) function returns wrong value when the vault is paused

	Documentation Evaluation
	Test Suite Evaluation
	Compilation Output
	Tests Output

	About Nethermind

